منتديات بابل للرياضيات / الاستاذ رائد الكرادي
اهلا وسهلا بالزائر الكريم
في منتديات بابل المتخصصة بالرياضيات المنهجية واللامنهجية في العراق والدول العربية
نرحب بكم معنا في المنتديات
شكرا لكم

انضم إلى المنتدى ، فالأمر سريع وسهل

منتديات بابل للرياضيات / الاستاذ رائد الكرادي
اهلا وسهلا بالزائر الكريم
في منتديات بابل المتخصصة بالرياضيات المنهجية واللامنهجية في العراق والدول العربية
نرحب بكم معنا في المنتديات
شكرا لكم
منتديات بابل للرياضيات / الاستاذ رائد الكرادي
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

الدوال الرياضية في حقل الإعداد المركبة

2 مشترك

اذهب الى الأسفل

الدوال الرياضية في حقل الإعداد المركبة  Empty الدوال الرياضية في حقل الإعداد المركبة

مُساهمة من طرف غدير الإثنين يوليو 23, 2012 7:25 pm


1) الدوال التحليلية :

إذا كانت الدالة F معرفة في جوار النقطة Z1 بحيث F قابلة للإشتقاق في Z1 وفي جوار لـ Z1 عندئذ تسمى F دالة تحليلية في Z1 .

ملحوظة : في التبولوجيا ، جوار نقطة Z1 هي مجموعة على الهيئة {Z : |Z - Z1| <e K e > 0}

Z1= X1 + i Y1 , ويرمز لها بالرمز : (D(Z1, e , حيث X1 , Y1 أعداد حقيقية .

مثال : F(z) = 2z2 - 3z + i

دالة تحليلية لكل عدد مركب ، لأنها قابلة للاشتقاق عند كل نقطة z في حقل الاعداد المركبة .

2) الدوال التوافقية (Harmonic Function) :

إذا كانت (U(x,y دالة معرفة على نطاق D بحيث أنها ومشتقاتها الجزئية الأولى والثانية متصلة في D
وكانت تحقق معادلة لابلاس (Laplace : Uxx + Uyy = 0) .

عندئذ تسمى (U(x,y دالة توافقية في D .

مثال : الدالة F(z) =z3 = (x+iy)3 دالة توافقية لأن :

F(z) = x3-3xy2 + i(3x2y) - iy3

= (x3 - 3xy2) + i(3x2y-y3)

= (U(x,y) + i V(x,y

وكل من الدالتين U , V دالتين توافقيتين في جميع نقط مجموعة الأعداد المركبة (جميع رتب المشتقات لكل منهما موجودة ومتصلة في D ) .

3) الدالة الأسية :

F(z) = ez = ex + iy

= (ex (cos y + i sin y , الدالة معرفة لكل Z في الاعداد المركبة .

4) الدوال المئلئية :

SIN(Z) =eiz - e-iz / 2i , COS(Z) =eiz + e-iz / 2 .

(TAN(Z) =SIN(Z) / COS(Z) , COT(Z) = 1 / TAN(Z .

(SEC(Z) = 1 / COS(Z) , CSC(Z) = 1 / SIN(Z .

ملحوظة : المتطابقات المثلثية في المتغير الحقيقي تسري للدوال المثلثية في المتغير المركب .

5) الدوال الزائدية :

SINh(Z) =ez - e-z / 2 , COSh(Z) =ez + e-z / 2 .

(TANh(Z) =SINh(Z) / COSh(Z) , COTh(Z) = 1 / TANh(Z .

(SECh(Z) = 1 / COSh(Z) , CSCh(Z) = 1 / SINh(Z .

ملحوظة : المتطابقات للدوال الزائدية الحقيقية تبقى صحيحة للدوال الزائدية المركبة .

6) الدوال اللوغاريتمية :
Log(z) = Log(r) + iQ , r = |z| , Q =Arg(z) , z # 0 .

ملحوظة : - (Arg(z تعني قيم الزاوية Q .

- تعارف المتخصصون على أن Log تدل على Ln في مثل هذه الحالات

avatar
غدير
عضو جديد
عضو جديد

عدد المساهمات : 13
نقاط : 4552
تاريخ التسجيل : 20/07/2012
العمر : 27
العنوان : بابل - الحلة
العمل : طالبة

الرجوع الى أعلى الصفحة اذهب الى الأسفل

الدوال الرياضية في حقل الإعداد المركبة  Empty رد: الدوال الرياضية في حقل الإعداد المركبة

مُساهمة من طرف رائد الكرادي الثلاثاء أغسطس 21, 2012 8:34 pm


شكرا على الموضوع
رائد الكرادي
رائد الكرادي
مدرس نشط
مدرس نشط

عدد المساهمات : 539
نقاط : 6031
تاريخ التسجيل : 10/07/2012
العمر : 49
العنوان : العراق
العمل : مدرس رياضيات

الرجوع الى أعلى الصفحة اذهب الى الأسفل

الرجوع الى أعلى الصفحة

- مواضيع مماثلة

 
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى